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Abstract

Using a rectification model and an experimentally measured distribution of the extracellular modulation ratio
(F1/F0), we investigate the consistency between extracellular and intracellular modulation metrics for classifying
cells in primary visual cortex (V1). We first demonstrate that the shape of the distribution of the intracellular
metric χ is sensitive to the specific form of the bimodality observed in F1/F0. When the proper mapping between
F1/F0 and χ is applied to the experimentally measured F1/F0 data, χ is weakly bimodal. We then use a two-class
mixture model to estimate physiological response parameters given the F1/F0 distribution. We show, once again,
that a weak bimodality is present in χ. Finally, using the estimated parameters for the two cell clases, we show that
simple and complex cell class assignment in F1/F0 is more-or-less preserved in a heavy-tailed f1/f0 distribution,
with complex cells being in the core of the f1/f0 distribution and simple cells in the tail (misclassification error
in f1/f0 = 19%). Class assignment in f1/f0 is likewise consistent (misclassification error in F1/F0 = 15%). Our
results provide computational support for the conclusion that extracellular and intracellular metrics are relatively
consistent measures for classifying cells in V1 as either simple or complex.
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Introduction
It has been observed that the ratio between the amplitude of the first harmonic of the response to the mean firing
rate (F1/F0) when a cell is responding to drifting sinusoidal gratings is bimodally distributed over the V1 population.
Furthermore, this bimodality is perceived as evidence for the existence of two discrete classes of cells [1]. Mechler
and Ringach [2] however, have proposed that the bimodality of F1/F0 does not necessarily imply the existence of
two cell classes. Using a rectification model, they show that a bimodal distribution in F1/F0 can be observed even
when the distribution of a parameter χ, closely linked to the intracellular modulation ratio f1/f0, is unimodal. Since
f1/f0 , and therefore χ, is more directly linked to the synaptic drive of the neurons, it can be argued that it is likely
to be a better metric than F1/F0 for inferring the presence of underlying cell classes.

In this paper we investigate the issue of simple and complex cell classification with respect to the consistency of
the extracellular and intracellular modulation ratios. Similar to [2], we model neuron responses using a rectification
model. Somewhat differently, however, we use the experimentally observed data for F1/F0 reported in [2] to fit model
parameters and estimate χ and f1/f0. We first show that the nonlinear mapping from F1/F0 to χ results in a weak
bimodal distribution for χ if one uses the experimentally observed F1/F0 distribution. We next use a rectification
model, similar to that used in [2], to estimate parameters for both a one class and two class model that best fit the
experimentally observed distribution of F1/F0. Finally we use the estimated parameters for the two cell class model
to investigate the consistency of simple and complex classification when labeling in F1/F0 and evaluating the class
distribution in f1/f0, and vice versa.

The rectification model
We assume that a neuron’s membrane potential in response to a sinusoidal drifting grating at preferred orientation and
spatial frequency consists of a sinusoidal waveform driven at the temporal frequency of the stimulus, with amplitude
A, and mean voltage potential Vm. A neuron’s instantaneous firing rate, r(t), is assumed to be proportional to the
supra-threshold membrane potential and zero if the membrane potential remains below the threshold, Vt. Eqn. 1&2
summarize this rectification model.

v(t) = Vm + A cos(2πft) (1)

r(t) = G[v(t) − Vt]
+ (2)

In Eqn. 2, G is the gain related to the spike generator. The intracellular modulation ratio f1/f0 is defined as
A/(Vm − VI), where VI is the inhibitory reverse potential. The extracellular modulation ratio F1/F0 is given by

F0 = 1
2π

∫ 2π

0
r(t)dt and F1 = 1

2π

∫ 2π

0
r(t) cos(2πft)dt.

In their paper [2], Mechler and Ringach define an intracellular ratio parameter χ = (Vt − Vm)/A, and prove that
F1/F0 is a nonlinear monotonic function of χ,

F1/F0 = f(χ) =







−χ
√

1−χ2+arccos(χ)√
1−χ2

−χ arccos(χ)
if −1 ≤ χ ≤ 1

−1/χ if χ < −1.
(3)

Non-linear mapping between F1/F0 and χ
Although a bimodal distribution in F1/F0 can be generated from a unimodal distribution in χ, as Mechler and Ringach
propose, this bimodal distribution appears to be quite different from experimentally observed results (compare Fig.
1a & b). We calculate the distribution of χ from the F1/F0 distributions using the following,

p(χ) = pF1/F0
(f(χ))| d

dχ
f(χ)|. (4)

Results are shown in Fig. 1a & b for two distributions reported in [2]. When using the experimental data, the
distribution in χ appears weakly bimodal, suggesting that the intracellular metric is consistent with the F1/F0

distribution in terms of inferring two underlying cell classes. As a second test of whether two cell classes are
consistent with the distribution of F1/F0 and χ, we use the rectification model to estimate parameters for a two
population mixture model of p(F1/F0) and p(χ).
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Figure 1: Relationship between the extracellular modulation index F1/F0 (top row) and the intracellular modulation
metric χ (bottom row) for simulated and experimental F1/F0 data. a) Example simulated F1/F0 distribution taken
from [2] and the corresponding distribution for χ using the non-linear mapping of Eqn. 4. For this simulated
F1/F0 data χ is clearly unimodal. (b) F1/F0 experimental data for macaque reported in [2] and the corresponding
distribution for χ given the non-linear mapping. Note that there is a weak bimodality in χ if the experimental data,
rather than the simulated data, is used. (c) Model fits to the experimental data assuming one (dashed) and two
(solid) classes of cells. Parameters for these fits are shown in Table 1. The two class fit better matches the non-linear
mapping (black points) and is also weakly bimodal.

Two class mixture model for p(F1/F0) and p(χ)
We fit the rectification model and associated distributions for the parameters to the experimental data for F1/F0.
Starting from the experimentally observed distributions of F1/F0 and the rectification model, we find the parameters
(i.e. mean value µ and standard deviation σ) of Vm, Vt, and A. Specifically, we first estimate parameters for Vt −Vm

and the calculate the corresponding values for Vt and Vm.
We assume Vt − Vm to be Gaussian distributed for both simple and complex cells, N (Vt − Vm; µVt−Vm

, σVt−Vm
).

As the amplitude A is positive, we set its distribution to,

p(A) =

{

1
√

2πσA

(exp(− (A−µA)2

2σ2

A

) + exp(− (−A−µA)2

2σ2

A

)) if A ≥ 0

0 if A < 0
(5)

For simplicity µA for complex cells is set to 0.
Additional constraints are included to make the model more realistic. For example we add a constraint on the

membrane potential relative to the inhibitory reversal potential. For both simple and complex cells, we force

µA + 1.5σA + µVt−Vm
+ 1.5σVt

+ 1.5σVm
< µVt

− VI (6)

µVt
is set at -55mV and σVt

to be 1.5mV for both types of cells [3].
We minimize the squared error between the F1/F0 data and the F1/F0 predicted by the model,

argmin
α, β, C

‖p(F1/F0) − p(f(α, β, C))‖2 (7)

where p(F1/F0) is the experimentally observed distribution given in Fig. 4c of [2]. α represents parameters for simple
cells, which include µVt−Vm

, σVt−Vm
and σA; and β represents the counterparts for complex cells. In addition, C is a

random variable representing cell type, with probability, p(C = t), equal to the fraction of cells of type t. Since this
is a nonlinear optimization, we perform exhaustive search to estimate the parameter values.

The parameters estimated for both a two class model and a single cell class model are given in Table 1, with
fits for F1/F0 and χ shown in Fig. 1c. Clear is that the two class model is a better fit to the experimental F1/F0

data than the single class model. In addition we see that the two class modeling fitting yields a weakly bimodal
distribution in χ, consistent with the non-linear mapping between F1/F0 and χ shown in Fig 1b.

Classifying simple and complex cells
We analyzed the extent to which classification is preserved in terms of the two cell classes (as defined by the parameter
values of the two classes) as well as in terms of the classification of f1/f0 given cell labels from F1/F0 and vice versa.



Two Classes One Class

Simple Cells Complex Cells

C 0.44 0.56 1.0

µVt−Vm
(mV ) 0.5 -14.6 0

σVt−Vm
(mV ) 3.8 5.2 2.5

µA(mV ) 5.6 0 1(-1)

σA(mV ) 6.8 6.3 0.5

Table 1: Results of optimizing the model parameters to fit experimental data for F1/F0.

We simulate 20,000 neurons, with distributions for F1/F0 and f1/f0 shown in Fig. 2. Misclassification error when
class labels are defined by the parameters of the two cell classes in Table 1 is 9% for F1/F0 and 25% for f1/f0.
When class labels are defined by criteria on the modulation index, misclassification error in f1/f0 is 19% and in
F1/F0 is 15%. As can be seen, the distribution in f1/f0 is not weakly bimodality, as is χ, rather it is a heavy tailed
distribution. Clear is that separability between cell classes is possible by observing that complex cells tend to lie in
the core of the f1/f0 distribution while simple cells are in the tails. Recent intracellular recordings in cat [4] have
shown a similar heavy-tailed distribution in f1/f0, and a misclassification error of 18% in f1/f0 when class labels
are defined in F1/F0. Interestingly, when applying our model fitting techniques to this experimentally measured
distribution of F1/F0 for cat, the fits are poor, largely because the shape of the F1/F0 in [4] is very different from
what is seen in macaque [2]. It should be noted that the distribution of F1/F0 reported in [4] consists of about 1/3
as many cells as that reported in [2].
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Figure 2: Simulation results showing classification of cell types given the two class model and parameters estimates
in Table 1. (a) Distribution of F1/F0 where white bars indicate cells defined as ”simple” in terms of their parameters
values in Table 1 and black bars indicate ”complex” cells in terms of these values. (b) Distribution of f1/f0 given the
same labels of simple and complex cells as in (a). (c) Distribution of simple (white) and complex cells (black) when
labels are defined by the modulation index criterion F1/F0 > 1 for simple, else complex. (d) Same as (c) except for
f1/f0 where criterion is f1/f0> 0.2 simple, else complex.

Conclusion
We conclude that extracellularly experimental data from primary visual cortex of macaque, assessed by a rectification
model are consistent with a heavy-tailed distribution in f1/f0 and weakly bimodal distribution for χ. Even though
our analysis does not provide conclusive evidence for multiple cell classes in V1 or microcircuitry differences between
simple and complex cells, our analysis demonstrates that extracellular and intracellular modulation criteria are more-
or-less consistent with one another and that the form of the intracellular criteria is consistent with two underlying
cell classes.
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