# Consistency of Extracellular and Intracellular Classification of Simple and Complex Cells

An Luo, Marios Philiastides, Jim Wielaard and Paul Sajda<sup>\*</sup>

#### Abstract

Using a rectification model and an experimentally measured distribution of the extracellular modulation ratio  $(F_1/F_0)$ , we investigate the consistency between extracellular and intracellular modulation metrics for classifying cells in primary visual cortex (V1). We first demonstrate that the shape of the distribution of the intracellular metric  $\chi$  is sensitive to the specific form of the bimodality observed in  $F_1/F_0$ . When the proper mapping between  $F_1/F_0$  and  $\chi$  is applied to the experimentally measured  $F_1/F_0$  data,  $\chi$  is weakly bimodal. We then use a two-class mixture model to estimate physiological response parameters given the  $F_1/F_0$  distribution. We show, once again, that a weak bimodality is present in  $\chi$ . Finally, using the estimated parameters for the two cell clases, we show that simple and complex cell class assignment in  $F_1/F_0$  is more-or-less preserved in a heavy-tailed  $f_1/f_0$  distribution, with complex cells being in the core of the  $f_1/f_0$  distribution and simple cells in the tail (misclassification error in  $f_1/f_0 = 19\%$ ). Class assignment in  $f_1/f_0$  is likewise consistent (misclassification error in  $F_1/F_0 = 15\%$ ). Our results provide computational support for the conclusion that extracellular and intracellular metrics are relatively consistent measures for classifying cells in V1 as either simple or complex.

<sup>\*</sup>Department of Biomedical Engineering, Columbia University, New York, NY 10027; (al2082, mgp2101, djw21, ps629)@columbia.edu. This research was supported by the DoD Multidisciplinary University Research Initiative (MURI) program administered by the Office of Naval Research (N00014-01-0625) and NGA grant HM1582-05-C-0008

## Consistency of Extracellular and Intracellular Classification of Simple and Complex Cells

An Luo, Marios Philiastides, Jim Wielaard and Paul Sajda Department of Biomedical Engineering, Columbia University, New York, NY 10027 (al2082, mgp2101, djw21, ps629)@columbia.edu.

### Introduction

It has been observed that the ratio between the amplitude of the first harmonic of the response to the mean firing rate  $(F_1/F_0)$  when a cell is responding to drifting sinusoidal gratings is bimodally distributed over the V1 population. Furthermore, this bimodality is perceived as evidence for the existence of two discrete classes of cells [1]. Mechler and Ringach [2] however, have proposed that the bimodality of  $F_1/F_0$  does not necessarily imply the existence of two cell classes. Using a rectification model, they show that a bimodal distribution in  $F_1/F_0$  can be observed even when the distribution of a parameter  $\chi$ , closely linked to the intracellular modulation ratio  $f_1/f_0$ , is unimodal. Since  $f_1/f_0$ , and therefore  $\chi$ , is more directly linked to the synaptic drive of the neurons, it can be argued that it is likely to be a better metric than  $F_1/F_0$  for inferring the presence of underlying cell classes.

In this paper we investigate the issue of simple and complex cell classification with respect to the consistency of the extracellular and intracellular modulation ratios. Similar to [2], we model neuron responses using a rectification model. Somewhat differently, however, we use the experimentally observed data for  $F_1/F_0$  reported in [2] to fit model parameters and estimate  $\chi$  and  $f_1/f_0$ . We first show that the nonlinear mapping from  $F_1/F_0$  to  $\chi$  results in a weak bimodal distribution for  $\chi$  if one uses the experimentally observed  $F_1/F_0$  distribution. We next use a rectification model, similar to that used in [2], to estimate parameters for both a one class and two class model that best fit the experimentally observed distribution of  $F_1/F_0$ . Finally we use the estimated parameters for the two cell class model to investigate the consistency of simple and complex classification when labeling in  $F_1/F_0$  and evaluating the class distribution in  $f_1/f_0$ , and vice versa.

#### The rectification model

We assume that a neuron's membrane potential in response to a sinusoidal drifting grating at preferred orientation and spatial frequency consists of a sinusoidal waveform driven at the temporal frequency of the stimulus, with amplitude A, and mean voltage potential  $V_m$ . A neuron's instantaneous firing rate, r(t), is assumed to be proportional to the supra-threshold membrane potential and zero if the membrane potential remains below the threshold,  $V_t$ . Eqn. 1&2 summarize this rectification model.

$$v(t) = V_m + A\cos(2\pi f t) \tag{1}$$

$$r(t) = G[v(t) - V_t]^+$$
(2)

In Eqn. 2, G is the gain related to the spike generator. The intracellular modulation ratio  $f_1/f_0$  is defined as  $A/(V_m - V_I)$ , where  $V_I$  is the inhibitory reverse potential. The extracellular modulation ratio  $F_1/F_0$  is given by  $F_0 = \frac{1}{2\pi} \int_0^{2\pi} r(t) dt$  and  $F_1 = \frac{1}{2\pi} \int_0^{2\pi} r(t) \cos(2\pi f t) dt$ . In their paper [2], Mechler and Ringach define an intracellular ratio parameter  $\chi = (V_t - V_m)/A$ , and prove that

 $F_1/F_0$  is a nonlinear monotonic function of  $\chi$ ,

$$F_1/F_0 = f(\chi) = \begin{cases} \frac{-\chi\sqrt{1-\chi^2 + \arccos(\chi)}}{\sqrt{1-\chi^2 - \chi \arccos(\chi)}} & \text{if } -1 \le \chi \le 1\\ -1/\chi & \text{if } \chi < -1. \end{cases}$$
(3)

#### Non-linear mapping between $F_1/F_0$ and $\chi$

Although a bimodal distribution in  $F_1/F_0$  can be generated from a unimodal distribution in  $\chi$ , as Mechler and Ringach propose, this bimodal distribution appears to be quite different from experimentally observed results (compare Fig. 1a & b). We calculate the distribution of  $\chi$  from the  $F_1/F_0$  distributions using the following,

$$p(\chi) = p_{F_1/F_0}(f(\chi)) |\frac{d}{d\chi} f(\chi)|.$$
(4)

Results are shown in Fig. 1a & b for two distributions reported in [2]. When using the experimental data, the distribution in  $\chi$  appears weakly bimodal, suggesting that the intracellular metric is consistent with the  $F_1/F_0$ distribution in terms of inferring two underlying cell classes. As a second test of whether two cell classes are consistent with the distribution of  $F_1/F_0$  and  $\chi$ , we use the rectification model to estimate parameters for a two population mixture model of  $p(F_1/F_0)$  and  $p(\chi)$ .



Figure 1: Relationship between the extracellular modulation index  $F_1/F_0$  (top row) and the intracellular modulation metric  $\chi$  (bottom row) for simulated and experimental  $F_1/F_0$  data. a) Example simulated  $F_1/F_0$  distribution taken from [2] and the corresponding distribution for  $\chi$  using the non-linear mapping of Eqn. 4. For this simulated  $F_1/F_0$  data  $\chi$  is clearly unimodal. (b)  $F_1/F_0$  experimental data for macaque reported in [2] and the corresponding distribution for  $\chi$  given the non-linear mapping. Note that there is a weak bimodality in  $\chi$  if the experimental data, rather than the simulated data, is used. (c) Model fits to the experimental data assuming one (dashed) and two (solid) classes of cells. Parameters for these fits are shown in Table 1. The two class fit better matches the non-linear mapping (black points) and is also weakly bimodal.

#### Two class mixture model for $p(F_1/F_0)$ and $p(\chi)$

We fit the rectification model and associated distributions for the parameters to the experimental data for  $F_1/F_0$ . Starting from the experimentally observed distributions of  $F_1/F_0$  and the rectification model, we find the parameters (i.e. mean value  $\mu$  and standard deviation  $\sigma$ ) of  $V_m$ ,  $V_t$ , and A. Specifically, we first estimate parameters for  $V_t - V_m$ and the calculate the corresponding values for  $V_t$  and  $V_m$ .

We assume  $V_t - V_m$  to be Gaussian distributed for both simple and complex cells,  $\mathcal{N}(V_t - V_m; \mu_{V_t - V_m}, \sigma_{V_t - V_m})$ . As the amplitude A is positive, we set its distribution to,

$$p(A) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_A}} \left( \exp\left(-\frac{(A-\mu_A)^2}{2\sigma_A^2}\right) + \exp\left(-\frac{(-A-\mu_A)^2}{2\sigma_A^2}\right) \right) & \text{if } A \ge 0\\ 0 & \text{if } A < 0 \end{cases}$$
(5)

For simplicity  $\mu_A$  for complex cells is set to 0.

Additional constraints are included to make the model more realistic. For example we add a constraint on the membrane potential relative to the inhibitory reversal potential. For both simple and complex cells, we force

$$\mu_A + 1.5\sigma_A + \mu_{V_t - V_m} + 1.5\sigma_{V_t} + 1.5\sigma_{V_m} < \mu_{V_t} - V_I \tag{6}$$

 $\mu_{V_t}$  is set at -55mV and  $\sigma_{V_t}$  to be 1.5mV for both types of cells [3].

We minimize the squared error between the  $F_1/F_0$  data and the  $F_1/F_0$  predicted by the model,

$$\underset{\alpha,\beta,C}{\operatorname{argmin}} \| p(F_1/F_0) - p(f(\alpha,\beta,C)) \|^2$$
(7)

where  $p(F_1/F_0)$  is the experimentally observed distribution given in Fig. 4c of [2].  $\alpha$  represents parameters for simple cells, which include  $\mu_{V_t-V_m}$ ,  $\sigma_{V_t-V_m}$  and  $\sigma_A$ ; and  $\beta$  represents the counterparts for complex cells. In addition, C is a random variable representing cell type, with probability, p(C = t), equal to the fraction of cells of type t. Since this is a nonlinear optimization, we perform exhaustive search to estimate the parameter values.

The parameters estimated for both a two class model and a single cell class model are given in Table 1, with fits for  $F_1/F_0$  and  $\chi$  shown in Fig. 1c. Clear is that the two class model is a better fit to the experimental  $F_1/F_0$ data than the single class model. In addition we see that the two class modeling fitting yields a weakly bimodal distribution in  $\chi$ , consistent with the non-linear mapping between  $F_1/F_0$  and  $\chi$  shown in Fig 1b.

### Classifying simple and complex cells

We analyzed the extent to which classification is preserved in terms of the two cell classes (as defined by the parameter values of the two classes) as well as in terms of the classification of  $f_1/f_0$  given cell labels from  $F_1/F_0$  and vice versa.

|                        | Two Classes  |               | One Class |
|------------------------|--------------|---------------|-----------|
|                        | Simple Cells | Complex Cells |           |
| C                      | 0.44         | 0.56          | 1.0       |
| $\mu_{V_t-V_m}(mV)$    | 0.5          | -14.6         | 0         |
| $\sigma_{V_t-V_m}(mV)$ | 3.8          | 5.2           | 2.5       |
| $\mu_A(mV)$            | 5.6          | 0             | 1(-1)     |
| $\sigma_A(mV)$         | 6.8          | 6.3           | 0.5       |

Table 1: Results of optimizing the model parameters to fit experimental data for  $F_1/F_0$ .

We simulate 20,000 neurons, with distributions for  $F_1/F_0$  and  $f_1/f_0$  shown in Fig. 2. Misclassification error when class labels are defined by the parameters of the two cell classes in Table 1 is 9% for  $F_1/F_0$  and 25% for  $f_1/f_0$ . When class labels are defined by criteria on the modulation index, misclassification error in  $f_1/f_0$  is 19% and in  $F_1/F_0$  is 15%. As can be seen, the distribution in  $f_1/f_0$  is not weakly bimodality, as is  $\chi$ , rather it is a heavy tailed distribution. Clear is that separability between cell classes is possible by observing that complex cells tend to lie in the core of the  $f_1/f_0$  distribution while simple cells are in the tails. Recent intracellular recordings in cat [4] have shown a similar heavy-tailed distribution in  $f_1/f_0$ , and a misclassification error of 18% in  $f_1/f_0$  when class labels are defined in  $F_1/F_0$ . Interestingly, when applying our model fitting techniques to this experimentally measured distribution of  $F_1/F_0$  for cat, the fits are poor, largely because the shape of the  $F_1/F_0$  in [4] is very different from what is seen in macaque [2]. It should be noted that the distribution of  $F_1/F_0$  reported in [4] consists of about 1/3as many cells as that reported in [2].



Figure 2: Simulation results showing classification of cell types given the two class model and parameters estimates in Table 1. (a) Distribution of  $F_1/F_0$  where white bars indicate cells defined as "simple" in terms of their parameters values in Table 1 and black bars indicate "complex" cells in terms of these values. (b) Distribution of  $f_1/f_0$  given the same labels of simple and complex cells as in (a). (c) Distribution of simple (white) and complex cells (black) when labels are defined by the modulation index criterion  $F_1/F_0 > 1$  for simple, else complex. (d) Same as (c) except for  $f_1/f_0$  where criterion is  $f_1/f_0 > 0.2$  simple, else complex.

### Conclusion

We conclude that extracellularly experimental data from primary visual cortex of macaque, assessed by a rectification model are consistent with a heavy-tailed distribution in  $f_1/f_0$  and weakly bimodal distribution for  $\chi$ . Even though our analysis does not provide conclusive evidence for multiple cell classes in V1 or microcircuitry differences between simple and complex cells, our analysis demonstrates that extracellular and intracellular modulation criteria are moreor-less consistent with one another and that the form of the intracellular criteria is consistent with two underlying cell classes.

**References** [1] Skottun B.C., De Valois R.L., Grosof D.H., Movshon J.A., Albrecht D.G. & Bonds A.B., Classifying simple and complex cells on the basis of response modulation. Vision Research, 31(7-8):1079-86, 1991.

[2] Mechler F.& Ringach D.L., On the classification of simple and complex cells. Vision Research, 42(8):1017-33, April 2002.

[3] Carandini M. & Ferster D., Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience 20(1):470-484, 2000.

[4] Priebe, N.J., Mechler, F., Carandini. M. & Ferster D., The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature Neuroscience, 7: 1113-1122, 2004.